Milind V. Kulkarni®, Daniel J. Quinlan®

Cornell University
Department of
Computer Science

“Department of Computer Science, Cornell University, Ithaca NY PCASC, Lawrence Livermore National Labs, Livermore CA

Abstract

When compiling or analyzing a program, the first step is the conversion of the source code into an Intermediate Representation (IR) which is organized in an Abstract Syntax Tree (AST). The AST captures all the
iInformation in the source code in a form suitable for analysis. However, the size of the AST is proportional to the number of lines of code, which makes storing the AST in memory infeasible for large projects. To combat
this problem, we utilize the ROSE framework to “compress” ASTs by performing a merge operation to combine IR nodes that represent the same declaration (e.g. declarations in a header file included from multiple
\Iocations). Doing so allows us to reduce the amount of space required by an AST without losing any information required for compilation or analysis.

Wy

~

Introduction

e ROSE is a framework for building source to source
translators

e Translator converts source code into an Interme-
diate Representation (IR), with nodes representing
Individual source constructs.

¢ IR nodes are linked together into an Abstract Syn-
tax Tree (AST) representing the source code in a
heirarchical manner.

—AST used for optimization and analysis.

e Number of IR nodes (hence, AST size) directly pro-
portional to code size.

e For large programs (such as many lab projects),
storage requirements for AST are prohibitive.

e Many IR nodes are duplicates (e.g. duplicate dec-
larations from header files)

e Rather than having duplicate IR nodes, we can
have a single IR node and reference it from multiple
_locations )

Merging AST
e For every declaration in AST, generate a unique
identifier
— Akin to name mangling in compilers
¢ Build a mapping from unique identifiers to IR nodes

— Identifier maps to the IR node of the first declara-
tion having that identifier (the reference node).

e For every link in AST to the IR node of a declaration,
use mapping to re-link to reference node.

~eRemove all duplicate IR nodes.

pi b

e

/

~

int myFunction (); namespace foo { class myClass {
int foo O; public:
namespace foo { namespace bar { int x;
int foo (); int bar (); void foo ();
namespace bar { } };
int bar (); }
int baz (); namespace foo {
} double test { int foo ();
} return 4.8; namespace bar {
} int bar );
class myClass { }
public: }
int x ;
void foo ();

s
Source code

AST before merging

AST after merging

Extensions

e ROSE provides support, through a rewrite mecha-
nism, for inserting new code into the AST

—Useful for performing source-to-source compiler
optimiziations
¢ ROSE builds secondary AST for code fragment to

be inserted, then inserts code fragment into pri-
mary AST.

e Any links In code fragment to declarations initially
link to secondary AST, necessitating its saving.

e Use merging mechanism to re-link the code frag-
ment to declarations in primary AST.

~eNow secondary AST can be removed safely.

Results

e Can eliminate all redundant declarations in AST

— Especially useful for commonly included standard
headers, such as iostream — each header file only
represented once in AST.

e Namespaces with identical names but different con-
tents are partially merged.

e Merging does not affect proper operation.

— All test codes — including uses of rewrite mecha-
nism — succeed

e AST sizes now roughly proportional to unique lines
of code, instead of total lines of code

e Future work: Leverage merging mechanism to per-

form analyses on large laboratory projects.

_

This work was performed under the auspices of the US Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

UCRL




